Mechatronics

Martin Berg

Santosh Devasia

Brian Fabien

Joe Garbini

Per Reinhall

Eric Seibel

Steve Shen

Duane Storti

Wei-Chih Wang

What is Mechatronics?

Mechatronics is the integration of mechanical, electrical, and computer technologies into the design of complex products

What is Mechatronics?

Mechatronics is the integration of mechanical, electrical, and computer technologies into the design of complex products

Illustrate with an example
Magnetic Resonance Force
Microscopy
Description:

By: Prof. Joe Garbini

Magnetic Resonance Force Microscopy

Goal: Image the 3D atomic structure of individual molecules

- First conceived at UW
- 15 years of effort
- ME involved from the start
- Now ~ 20 research groups internationally

Challenge:

- Detection of exquisitely small forces (Zepto-newtons, Zepto = 10^{-21}).
- Operates near the quantum limit.
- Subject to spin decoherence.
- Image reconstruction.

- **Challenge:** Detection of exquisitely small forces (Zepto-newtons!).
 - Operates near the quantum limit.
 - Subject to spin decoherence.
 - Image reconstruction.

MRFM funding: NSF, NIH, ARO, DARPA, IBM (Almaden).

- MURI (ARO), \$1M per year, for 5 years (75% UW) **Primary**

Current funding:

Goal: - Single nucleon detection.

Collaborators: - Cornell: Prof. John Marohn

- U Michigan: Prof. Al Hero

- IBM: Dr. Dan Rugar

- UW - School of Medicine: Prof. John Sidles

- Mathematics: Prof. Ann Greenbaum

Pedagogic Goal: Quantum Systems Engineering.

Research Issues

Mechanical Issues: Position and Thermal Control, Vibrations

Electrical Issues: Signal Conditioning

Computational issues: Data acquisition and controller implementation

What is Mechatronics?

Mechanical Issues: Position and Thermal Control, Vibrations,

Electrical Issues: Signal Conditioning,

Computational issues: Data acquisition and controller implementation

Mechatronics is the integration of mechanical, electrical, and computer technologies into the design of complex products

What is Mechatronics?

Mechanical Issues: Position and Thermal Control, Vibrations,

Electrical Issues: Signal Conditioning,

Computational issues: Data acquisition and controller implementation

Mechatronics is the integration of mechanical, electrical, and computer technologies into the design of complex products

Mechatronics builds on Core-ME-competency in Dynamics, Vibrations, Controls, Nonlinear Systems and Robotics

What drives Research in Mechatronics?

The need to improve performance

What drives Research in Mechatronics?

Need to improve performance

Two Examples

Example 1: by Prof. Steve Shen
Improve Performance of
Computer Hard Drives

Vibrations in Spindle Motors of Computer Hard Disk Drives

Professor I. Y. (Steve) Shen, ME Dept

Computer Hard Disk Drives

Fluid Bearing Spindles

Need to Improve Performance

- (a) Increase Information density (Small bits)
 (Approach: increase the number of tracks)
- (b) Reduce data-access speed (**High Speed**) (Approach: increase spin speed)

Problem: Small vibrations in the disc cause read/write error

Solution: New Technology: Spindle motors with fluid-dynamic bearings

Research Issues: Integration of two fields – fluids and nonlinear vibrations

- No mathematical models are available for design and optimization of disks/spindle.
- 2. Design is done by trial and error; long and expensive design cycles.
- 3. Almost no knowledge base is available.

Prof. Shen has a Strong History of Collaboration with Disk Drive Industry and Leadership Role in this Research Area

What drives Research in Mechatronics?

Need to improve performance

Second Example
by Prof. Martin Berg
Improve Performance of
Large Robots

Adaptive End-Effector Position Control

• Performance Improvement Objective:

Order-of-magnitude improvement in the accuracy to which the position of the end-effector of an industrial robot/machine tool can be controlled.

- Research Issue:

 Interface of different scales
 Large scale --- large range of robot
 Small scale --- need for precision
 positioning
- Started with Local Collaboration Boeing: Robot is shown in photo
- Funding: NSF funding to UW: \$93K/year Period: September 2004-August 2007

Recap: What drives Research in Mechatronics

- Need to improve performance
- Interface of different scales large range (large scale) robot with fine precision (small scale)
- Interface of different fields fluids and vibrations in the fluid-dynamic bearings

What are New Opportunities in Mechatronics?

- Need to improve performance
- Interface of different scales large range (large scale) robot with fine precision (small scale)
- Interface of different fields fluids and vibrations in the fluid-dynamic bearings

What are New Opportunities in Mechatronics?

- Need to improve performance
- Interface of different scales large range (large scale) robot with fine precision (small scale)
- Interface of different fields fluids and vibrations in the fluid-dynamic bearings

New Scales:

(a) Nano

What are New Opportunities in Mechatronics?

- Need to improve performance
- Interface of different scales large range (large scale) robot with fine precision (small scale)
 - Interface of different fields fluids and vibrations in the fluid-dynamic bearings

New Scales:

(a) Nano

New Fields (Emerging applications)

(b) Bio

What do we want to do?

New Scales: (a) NanoNew Fields (Emerging applications)(b) Bio

What we want to do?

We want to Leverage Core-Competency when developing New Opportunities

Current expertise in sub-nano scale positioning, control, Modeling and fabrication.

Robotics, Instrumentation

New Scales:

(a) Nano

New Fields (Emerging applications)

(b) Bio

Faculty are already exploiting new opportunities in Bio/Nano

Ping Ao	Modeling biological networks	Bio-medical
Martin Berg	Automation for Crystallography	Bio-medical Distributed Systems
Santosh Devasia	a) AFM Imaging of human cellsb) Nanowire-Cilia-based Pumps	Nano/Bio-imaging Bio-fluidics
Joe Garbini	Imaging of molecular structure	sub-nano Bio-molecules
Per Reinhall	Biomedical sensors, Heat Valves	Bio-medical
Eric Seibel	Single-fiber endoscope	Bio-medical
Wei-Chih Wang	Instrumented Prosthetic Footwear	Bio-medical
Brian Fabien	Model Identification for Prosthetics	Bio-medical
Duane Storti	Nonlinear oscillations in Bio-systems	Bio-mimetic Design

Detailed Example 1/3

Automated Screening of Protein Crystals
By Martin Berg

Automated Annealing, Healing and Screening of Protein Crystals

- Joint work with Prof. Ethan Merritt, Dept. of Biochemistry and Biological Structure
- Objective: An automated system for manipulating the X-ray diffraction properties of protein crystals..
- Sponsor: National Institutes of Health
 Funding: \$100K/year to ME

ME Core-Competency

- Joint work with Prof. Ethan Merritt,
 Dept. of Biochemistry and Biological
 Structure
- **Objective**: An automated system for manipulating the X-ray diffraction properties of protein crystals..
- Sponsor: National Institutes of Health Funding: \$100K/year to ME

Control System A

Control of a single system (e.g., Robot) is well studied

ME Core-Competency

- Joint work with Prof. Ethan Merritt,
 Dept. of Biochemistry and Biological
 Structure
- **Objective**: An automated system for manipulating the X-ray diffraction properties of protein crystals..
- Sponsor: National Institutes of Health Funding: \$100K/year to ME

Control System A

Control System B

Control System C

Control of multiple distributed systems is still challenging

Leads to research in distributed systems

Supervisory Control of Distributed Systems (Prof. Martin Berg)

Similar Challenges arise in Modeling of Distributed Biological Networks (Prof. Ping Ao)

Control System A

Control System B

Control System C

Control of a multiple distributed system is still challenging

Detailed Example 2/3

Nano-Bio-Imaging and Nano-Bio-Fluidics

Prof. Santosh Devasia

Project 1: Nano-Bio Imaging

Goal: Nano-scale Imaging soft human cells with AFM at high speeds

- Can we identify problems in cell migration mechanisms at the nano-scale with an AFM (Interface of Nano and Bio)
- Q1. How does the dimension change over time?
- Q2. How does the mechanical properties of the cell change over time?

Research Issues are related to ME core-competency

- Small forces to prevent cell damage (Controls, vibrations)
- Precision positioning
- Piezo-actuators (Nonlinear)

Collaboration with:

- Prof. M. Reed (Medical School)
- Helpful to obtainNIH (R21) Funding

AFM images of Microvascular Endothelial Cell

Project 2: Nano/Bio-Fluidic Systems

Goal: Move small amounts of bio-fluids

Issues: Biomimetic design (Nanowire Cilia)

- ME Issues:
- Micro/nano cilia-type structure (nanofabrication)
- Minimum-Energy for Portability (Controls)
- Fluid-structure interactions

Funding: Recent NSF 2006-2009 \$120K/Year Collaborators:

- Prof. Jae Chung (ME, Nanofabrication) --
- Prof. Jim Riley (ME, Fluid-structure Interactions)

Nano/Bio-Fluidic Systems

Goal: Move small amounts of bio-fluids

Issues:

- Micro/nano cilia-type structure
 (biomimetic design, nanofabrication)
- Minimum-Energy for Portability (Controls)
- Fluid-structure interactions

Collaborators:

- Prof. Jae Chung (ME, Nanofabrication) --
- Prof. Jim Riley (ME, Fluid-structure Interactions)

Example of the Multiplier Effect:

New hire in nano-manufacturing (Prof. Jae Chung)

+ Controls (Prof. Devasia) + Fluids (Prof. Riley)

Would be impossible without new hires in emerging areas

Detailed Example 3

Single Fiber Endoscope

Prof. Eric Seibel

Scanning Fiber Endoscope

Idea: Rather than use "set of optical fibers to image" use a single fiber (thinner) and scan it (vibrate) to image the same area

Will lead to interventional/surgical endoscopy

1.6 mm SFE distal tip microscanner & imager

Scanning Fiber Endoscope

- Invented at UW (multiple patents)
- Collaborations across UW and Med School
 - ME: Prof. Per Reinhall
 (core-ME issues include: Nonlinear
 Vibrations, Smart materials, Controls)

Scanning Fiber Endoscope

- Invented at UW (multiple patents)
- Collaborations across UW and Med School
 - ME: Prof. Per Reinhall
- Expenditures for Last Year
 - 2 NIH Grants 0.6M
 - PENTAX Contract: 1 M

1.6 mm SFE distal tip microscanner & imager

Thus...Faculty are already exploiting new opportunities in Bio/Nano

Ping Ao	Modeling biological networks	Bio-medical
Martin Berg	Automation for Crystallography	Bio-medical Distributed Systems
Santosh Devasia	a) AFM Imaging of human cellsb) Nanowire-Cilia-based Pumps	Nano/Bio-imaging Bio-fluidics
Joe Garbini	Imaging of molecular structure	sub-nano Bio-molecules
Per Reinhall	Biomedical sensors, Heat Valves	Bio-medical
Eric Seibel	Single-fiber endoscope	Bio-medical
Wei-Chih Wang	Instrumented Prosthetic Footwear	Bio-medical
Brian Fabien	Model Identification for Prosthetics	Bio-medical
Duane Storti	Nonlinear oscillations in Bio-systems	Bio-mimetic Design

Recap: New Opportunities in Mechatronics

New Scales: (a) Nano

New Fields (b) Bio

Recap: Plan is to Leverage Core-ME-Competency

Mechatronics

- Nano-scale Control
- Dynamics
- Vibrations
- Nonlinear Systems
- Robotics
- Instrumentation

New Scales:

(a) Nano

New Fields (b) Bio

Where should future focus be in Nano/Bio?

Mechatronics

- Nano-scale Control
- Dynamics
- Vibrations
- Nonlinear Systems
- Robotics
- Instrumentation

Potential List

- a) Quantum Systems
- b) Nano/Bio Manufacturing
- c) Nano/Bio Instrumentation
- d) Biomedical Devices
- e) Distributed Systems
- f) Bio-Robotics

(Rehab +Bio-mimetic)

Why These Areas?

Potential List

- Quantum Systems
- Nano/Bio Manufacturing
- Nano/Bio Instrumentation
- Biomedical Devices
- Distributed Systems
- Bio-Robotics (Rehab +Bio-mimetic)

Possibilities for Multiplier Effect...

Because of Multiplier Effect...

New Opportunities	ME Multipliers Core Competency	Outside Multipliers
Quantum Systems	Garbini, Devasia	Nanotech Center
Nano/Bio Manufacturing	Taya, Wei Li, Chung, Li	Nanotech Center Med School
Nano/Bio Instrumentation	Reinhall, Seibel, Devasia, Garbini	Nanotech Center Med School, Seattle VA
Biomedical Devices	Gao, Reinhall, Wang, Shen	Med School Seattle VA
Distributed Systems	Ping Ao, Berg	EE and Aero Depts Med School
Bio-Robotics (Rehab +Bio-mimetic)	Berg, Fabien, Devasia, Reinhall	EE Dept, Seattle VA Med School

Summary Mechatronics

Opportunities

Multipliers

Future Focus

(a) New Scales Nano

(b) New Fields Bio ME Core Competency

Nanotech Center

UW Medical School

Seattle VA

Quantum Systems

Nano/Bio Manufacturing

Nano/Bio Instrumentation

Biomedical Devices

Distributed Systems

Bio-Robotics

(Rehab +Bio-mimetic)