

Automated Micro Robotic Manipulation using Optical Tweezers

Ashis G. Banerjee, Ph.D.

Assistant Professor

Department of Industrial & Systems Engineering

Department of Mechanical Engineering

University of Washington, Seattle, WA

Optical Tweezers as Micro Robots

SMARTS

Why Optical Tweezers?

- Advantages
 - Multiplexing capability (up to 100 objects concurrently)
 - Precise and independent control over each object in 3D
 - Flexibility in choice of manipulated object (particles, cells, biomolecules, etc.) and medium
 - Easy to release trapped objects after manipulation
 - Minimal object damage during manipulation

SMARTS

SMARTS

B

- Motivation
 - Manipulate large number of objects in parallel
 - Reliable and efficient manipulation
- Challenges
 - Stochastic and non-linear system dynamics
 - Uncertainty in sensing (optical imaging) measurements
 - Fast motion control updates at rates of several Hz
 - Optimized manipulator design (number, positions, and intensities of traps for gripped object)
 - Real-time trajectory planning

Focus on manipulation of cells using optically-trapped microspheres (beads) as grippers to minimize damage due to laser exposure

Automation: Need for Perception

Problem Formulation

SMARTS

- Given input
 - Set of images from different time-lapse experiments
 - Beads and irregular-shaped cells
 - Beads and spherical cells

- Desired output
 - Centroids and diameters of beads; diameters and orientations of cell bounding boxes

Robust Image Processing Method

SMARTS

SMARTS

B

 Able to detect object positions and orientations even when they are of different types and located close to each other

Detecting Irregular-Shaped Cells L and Beads B

Otsu's thresholding

Histogram equalization & manual thresholding

Detecting Spherical Cells and Beads

Test image

Our method

L

B

SMARTS

Otsu's thresholding

Manual thresholding

Performance Comparison

L

B

SMARTS

- States are bead positions; control inputs are optical trap (laser beam focus) positions
- Optical trapping forces on beads are modeled using combination of linear and non-linear spring stiffness with different axial and radial components
- Langevin (thermal) forces and observation disturbances are modeled using zero mean Gaussian distributions
- Viscous drag, buoyancy, and inertial forces are also considered

$$\begin{split} \mathbf{M}\ddot{\mathbf{x}} &= \left(\mathbf{K}_{ln}(t) \circ (\mathbf{1} \otimes \mathbf{U}(t) - \mathbf{x} * \mathbf{1}^{T}) \circ e^{-\mathbf{K}_{en} \circ (\mathbf{1} \otimes \mathbf{U}(t) - \mathbf{x} * \mathbf{1}^{T})^{2}}\right) \mathbf{1} - \mathbf{B}_{drag} \dot{\mathbf{x}}(t) - \mathbf{B}_{o} + \mathbf{F} \eta \\ \mathbf{F} &= \begin{bmatrix} \sqrt{2k_{B}T\gamma} & 0 & 0 \\ 0 & \sqrt{2k_{B}T\gamma} & 0 \\ 0 & 0 & \sqrt{2k_{B}T\gamma} \end{bmatrix} \quad \gamma = 6\pi r\mu \quad \eta_{i} \sim Normal(0, \sqrt{\delta t}) \\ \mathbf{y} &= \mathbf{C}\mathbf{x} + \mathbf{\xi} \qquad \mathbf{\xi} \sim Normal(\mathbf{0}, \mathbf{\Sigma}) \end{split}$$

SMARTS

Model Predictive Controller (MPC)

SMARTS

- MPC simulates system for certain time horizon to compute control trajectory, i.e., sequence of actions
 - Applies only first action
 - Receives feedback and simulates system once again for receding time horizon based on observed states
- Uses quadratic cost function to optimize each control input

$$J = \sum_{i}^{t} ((\boldsymbol{x}(i) - \boldsymbol{x}_{d})^{T} (\boldsymbol{x}(i) - \boldsymbol{x}_{d}))$$

Bead motions under influence of one or more optical traps

SMARTS

- correspond well to theoretical and experimental results
 - Optical trapping forces simulated using high-fidelity geometrical optics toolbox

Microsphere Arrangement Formation

SMARTS

- Successful demonstration for simple arrangements in 2D
 - Further work needed for more complex-shaped arrangements involving larger number of objects in 3D

Ongoing Work: Multi-Cellular Arrangement Formation

SMARTS

B

 Investigate signaling between parenchymal and nonparenchymal cells as function of geometric shapes and distances

Participants

- Contributors
 - Ph.D. student
 - Manasa Bollavaram
 - M.S. student
 - Keshav Rajasekaran
 - Undergraduate researchers
 - Ekta Samani
 - John Stewart

- Collaborators
 - Purdue University
 - Dr. Sagar Chowdhury
 - University of Southern California
 - Prof. Satyandra K. Gupta
 - University of Washington
 - Daniel Corbett (Bioengineering)
 - Chelsea Fortin (Bioengineering)
 - Dr. Andrea Leonard (Mechanical Engineering)
 - Prof. Nathan Sniadecki (Mechanical Engineering)
 - Prof. Kelly Stevens (Bioengineering and Pathology)