A handheld optical-sectioning microscope for cancer detection and surgical guidance

C. Yin¹, A.K. Glaser¹, Y. Chen¹, L. Wei¹, S. Abeytunge², G. Peterson², C. Glazowski², N. Sanai⁴, M.J. Mandella³, M. Rajadhyaksha² & J.T.C. Liu¹

3 Stanford University School of Medicine, Department of Pediatrics, Stanford, CA 94305, USA; 4 Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ 85013, USA

1 University of Washington, Department of Mechanical Engineering, Seattle, WA 98195, USA; 2 Memorial Sloan-Kettering Cancer Center, Dermatology Services, Department of Medicine, New York, NY 10010, USA;

1 Clinical needs

Early detection of oral cancers

- Existing screening tools have high sensitivity but poor specificity (many false positives).
- Gold standard diagnosis requires physical biopsy of suspicious lesions (many of which are benign), which is slow, expensive, and invasive.
- Real-time non-invasive "optical biopsy" or "point-of-care pathology" would help to examine suspicious lesions for early detection.

High-resolution image-guided resection of brain tumors

- Current imaging modalities (MRI, CT, and wide-field fluorescence) often lack the resolution, sensitivity, and contrast to accurately delineate tumor margins, especially for diffuse gliomas.
- 5-ALA-induced PpIX fluorescence is often undetectable in low grade gliomas via widefield fluorescence imaging (see panel 6).
- High-resolution fluorescence microscopy has the resolution and sensitivity to quantify sparse PpIX expression in low-grade gliomas and guide tumor removal.

Detector spot diagrams

Illumination path

Collection path

RMS < 10 μm

 $y = 200 \, \mu m$

2 Handheld line-scanned (LS) dual-axis confocal (DAC) microscope

The dual-axis advantage

Illumination and

Photograph of miniature device held above a large tabletop DAC microscope prototype

Handheld device (in progress) collection optics Singlemode illumination

The line-scan advantage

Point-scanned DAC

Single-axis confocal

High-NA focusing = short working distance

More background noise from scattered

light

- High contrast and imaging depth
- Slow pixel-by-pixel scanning is required to construct an image, which leads to motion artifacts.

Field points

along the focal line

 $y = 0 \mu m$

 $y = 100 \ \mu m$

 $y = 200 \mu m$

Line-scanned DAC

Dual-axis confocal

Low-NA focusing = long working distance

Less noise from scattered light

- High contrast at shallow depths only
- Fast line-by-line scanning to minimize motion artifacts during handheld use.

6 Images of fluorescently labeled fresh tissues

Images from

Histology

Mouse kidney

stained with

methylene blue

(depth ~100 µm)

6 Clinical: 5-ALA-induced PpIX for low-grade glioma resection

Why high-resolution microscopy?

Fact: Wide-field fluorescence image-guided surgery with 5-ALA-induced PpIX has improved outcomes for patients with high-grade gliomas. [Stummer et al., Lancet Oncology,

Shortcomings: 1) Image intensity is subjective, especially at the diffuse margins. 2) Poor sensitivity to detect sparse tumor cell populations (e.g., diffuse margins & lowgrade gliomas)

Solution: Intraoperative confocal microscopy has the resolution/sensitivity to detect sparse and disseminated fluorescence from tumor cells. [Sanai et al., J. Neurosurg. 2011, Liu, Meza, & Sanai, Neurosurgery 2014]

Preliminary data: microscopic analysis of PpIX expression in the human brain

Next steps: develop image processing algorithm to quantify the density and intensity of sub-cellular PpIX fluorescence in human low-grade glioma tissues

4 Axial and Lateral resolution

3 ZEMAX ray-tracing simulations

Mouse ear vasculature imaged at 16 frames/sec and color coded for imaging depth

Next steps: utilize handheld LS-DAC microscope in oralcancer patients at the Memorial Sloan-Kettering Cancer Center